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Algeria’s third consecutive winter drought leads to low cereal yield and 
production expectations 
 
The 2022-2023 winter cereal season has been marked by a prolonged rainfall deficit lasting from November 

to December (Figure 1) and with less than 50% of seasonal rainfall peaks. March and April’s rainfall has been 

below-average throughout the country’s northern part, followed by irregular and below-average rainfall in 

the early parts of the season. As a result, winter wheat and barley growth have been delayed since the start 

of the season, and cereals biomass is well below average in most regions (except for some areas along the 

north/eastern coastal part). 

At the end of April, the dominant red pattern in Figure 2 indicates that crops and rangelands in most northern 

parts of the country have not received sufficient rainfall to fulfil their water requirements.  Above-average 

temperatures in October-December and then again in March-April, have further deteriorated crop 

conditions. The dry conditions harmed cereals during critical crop development stages. This is reflected by 

the cumulative Normalised Difference Vegetation Index (NDVI) anomaly map (Figure 3), a biomass proxy, 

showing negative anomalies in various provinces at the end of April.  

As a result of the persistent dry conditions that hampered crop growth in northern parts of the country, there 

is a prospect of below to well below-average national yield and production for winter cereals and low 

vegetation and water availability for pastoral areas. The 2023 below-average forecast follows the below-

average yield for barley and soft wheat that affected the country in 2022 (Special Focus - May 2022) and 2021 

(Special Focus – May 2021). 

The national level forecasts (Table 1) are in line with those of the second MARS North Africa bulletin of May 

2023, where total wheat and barley yield is forecasted to be 24% and 14%, respectively, below the last 5-

year average.  

 

Figure 1. Cumulative rainfall anomaly for November / December / January in % (relative difference with the 

historical average), showing significant seasonal rainfall deficits that affected the northern part of Algeria. 

 

SPECIAL FOCUSi – May 2023 
 

https://mars.jrc.ec.europa.eu/asap/files/special_focus_2022_05.pdf
https://mars.jrc.ec.europa.eu/asap/files/special_focus_2021_05.pdf
https://publications.jrc.ec.europa.eu/repository/handle/JRC133197
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INFO BOX 1 - WATER SATISFACTION INDEX 

The Water Satisfaction Index (WSI) is an indicator of crop (or rangeland) performance. It expresses 

the percentage at which the crop water requirements have been met and thus indicates possible 

water stress.  It is based on a water balance scheme comparing the crop (or rangeland) water 

demand to the actual water availability.   

See more in ASAP WSI documentation.   

 

 

Figure 2. Spatial distribution of anomalies in the Water Satisfaction Index for crops from the start of the 

growing season until the end of April 2023. 

 

 

Figure 3. Standardized anomalies in cumulative NDVI from the start of the growing season until the end of 

April 2023. 

INFO BOX 2 - NORMALISED DIFFERENCE VEGETATION INDEX (NDVI) 

The NDVI (Normalised Difference Vegetation Index) is used as an indicator of vegetation health. It is a 

combination of the red and near-infrared bands registered by satellites. For more on NDVI and NDVI 

anomalies, see here: ASAP warning classification scheme  

 

https://mars.jrc.ec.europa.eu/asap/files/asap_wsi_technical_report_v_2_0.pdf
https://mars.jrc.ec.europa.eu/asap/files/asap_warning_classification_v_4_0.pdf
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Quantitative yield forecasts for the main Algerian winter cereals (durum and soft wheat, and barley) in the 

main producing provinces, have been computed based on the machine learning workflow proposed by 

Meroni et al. (2021), which was shown to predict historical national yields with an accuracy of 0.16-0.2 t/ha 

(13-14 % of mean yield) within the season. This robust and automated workflow processes automatically 

different combinations of yield proxies such as NDVI, temperature, precipitation, and incident radiation data, 

taken from the ASAP platform, with machine-learning algorithms. The resulting yield forecasts computed at 

the beginning of May 2023 (available input data until the end of April) are shown per province and crop in 

Figures 5, 7, and 9. In Figures 6, 8, and 10 the percent difference of forecasted yield with the 2002-2018 

average is also mapped per province and crop. For a better understanding of the yield maps, the location of 

croplands is presented in Figure 4.  

 

Figure 4. Crop map for Algeria (source: EC-JRC ASAP Warning Explorer). 

Figure 5. Durum wheat 2022-23 yield forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to 90% of the national mean 
crop production, thus excluding marginal production 
provinces. 

 

 
Figure 6. Durum wheat 2022-23 yield forecast difference 
(in %) with 2002-2018 average yield at the provincial 
level. 
 

 

https://mars.jrc.ec.europa.eu/asap/wexplorer/
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Figure 7. Soft wheat 2022-23 yield forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to 90% of the national mean 
crop production, thus excluding marginal production 
provinces. 
 

 
Figure 8. Soft wheat 2022-23 yield forecast difference (in 
%) with 2002-2018 average yield at the provincial level. 

 
Figure 9. Barley 2022-23 yield forecast at the provincial 
level. Forecasts cover the major producing provinces that 
contribute to 90% of the national mean crop production, 
thus excluding marginal production provinces. 

 
Figure 10. Barley 2022-23 yield forecast difference (in %) 
with 2002-2018 average yield at the provincial level. 

 

INFO BOX 3 – IN SEASON YIELD FORECASTS WITH SATELLITE DATA  

Operational yield forecasting approaches are often based on empirical regression models linking 

historical yields and administrative units-averages of seasonal satellite and climate data for cultivated 

areas (Schauberger et al., 2020). In operations, the model is then fed with data observed for the current 

growing season to forecast the final yield. Satellite instruments providing frequent, coarse resolution 

satellite image time series, such as AVHRR (Advanced Very High Resolution Radiometer), SPOT-VGT 

(SPOT-VEGETATION), or MODIS (Moderate Resolution Imaging Spectroradiometer), have been 

extensively used for yield estimation at regional scales (Atzberger et al., 2016; Rembold et al., 2013). 

Typically, yields are estimated by regressing either vegetation indices or crop biophysical variables at 

specific dates, which are proxies for green biomass, or features characterizing the dynamics of a 

vegetation index over time such as the senescence or the green-up rate (Waldner et al., 2019). Popular 

linear regression approaches use the Normalised Difference Vegetation Index (NDVI; Rouse et al., 1974) 

either at its peak (e.g., Becker-Reshef et al., 2010; Franch et al., 2015) or its cumulative value over the 

growing season (e.g., López-lozano et al., 2015; Meroni et al., 2013). 

Whereas linear regressions may fail to capture the complex interactions between environmental 

conditions and yield, machine learning (ML) models have demonstrated powerful performance in 

various data-driven applications, including yield estimation (Cai et al., 2019; Johnson et al., 2016; Kamir 

et al., 2020; Mateo-Sanchis et al., 2019; Wolanin et al., 2020; Zhang et al., 2020). 
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In this report, we use the approach of Meroni et al. (2021), a generic and robust machine learning 

workflow to forecast crop yields with small, public, and easily accessible climate and satellite time 

series.  

 

The production forecasts are also shown per province and crop in Figures 11-13.  

 
Figure 11. Durum wheat 2022-23 production forecast at 
the provincial level. Forecasts cover the major producing 
provinces that contribute to 90% of the national mean 
crop production, thus excluding marginal production 
provinces. 

 

 
Figure 12. Soft wheat 2022-23 production forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to 90% of the national mean 
crop production, thus excluding marginal production 
provinces. 
 

 

 
Figure 13. Barley 2022-23 production forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to 90% of the national mean 
crop production, thus excluding marginal production 
provinces. 
 

 

  

 

Forecasts of national production are reported in Table 1. It is evident that the yield forecast for barley and 

soft wheat is well below the 5-year average (ca. 22% and 28% below-average, respectively). Yield 

expectations for the most important cereal, durum wheat, is also below the 5-year average, but less 

severely impacted (ca. 15% below). This can be explained by the fact that the northeaster part, where a 

significant cropping area exists (Figure 4), is slightly less drought-affected (Figure 3, 6 and 11).  
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Table 1. National production forecasts. The average crop area is used to estimate production from forecasted 

yield.  

 May forecast*  

Crop 
Forecasted Yield 

(t/ha) 

Yield difference with 
5-year average 

(%)*** 
Forecasted production (tons)  

Barley 0.90 (1.06 MARS) ** -21.81 911,182  

Durum wheat 1.32 (1.32 MARS) -14.47 1,670,079  

Soft wheat 1.05 (1.10 MARS) ** -27.96 615,455  

* Issued on the 5th of May 
** The discrepancy is attributed to the slightly different statistical data used for the calculations.  
*** 2014-2018 

More information on the methodology can be found here:  

• Meroni, M., Waldner, F., Seguini, L., Kerdiles, H., Rembold, F. (2021). Yield forecasting with machine 
learning and small data: what gains for grains? (arXiv:2104.13246) 

• JRC MARS bulletin (April 2021): https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-mars-bulletin-vol29-
no4.pdf  

• Schauberger, B., Jägermeyr, J., Gornott, C., 2020. A systematic review of local to regional yield 
forecasting approaches and frequently used data resources. Eur. J. Agron. 120, 126153. 588 
https://doi.org/10.1016/j.eja.2020.126153  

• Atzberger, C., Vuolo, F., Klisch, A., Rembold, F., Meroni, M., Marcio Pupin, M., Formaggio, A., 2016. 
Agriculture, in: Thenkabail, P.S. (Ed.), Remote Sensing Handbook. CRC Press, pp. 71–103. 

• Rembold, F., Atzberger, C., Savin, I., Rojas, O., 2013. Using Low Resolution Satellite Imagery for 
Yield 576 Prediction and Yield Anomaly Detection. Remote Sens. 5, 1704–1733. 577 
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• Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the vernal 
advancements and retro gradation of natural vegetation. Greenbelt, MD. 

• Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C., 2010. A generalized regression-based 
model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. 
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