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SPECIAL FOCUSi – May 2021 
 

 
Poor yield outlook for winter cereals in Algeria 
 
The winter cereal season is ongoing in Algeria and has been marked by above-average temperatures (Figure 

1) and a large rainfall deficit (Figure 2).  At the end of April, the dominant red pattern in Figure 3 indicates 

that crops and rangelands have not received sufficient rainfall to fulfill their water requirements. The 

combined effects of poor rainfall and above-average temperatures negatively impacted crops and 

rangelands in the western and central parts of the country. The hot and dry conditions had a negative impact 

for cereals during flowering and grain-filling, particularly by accelerating the grain filling on the expense of 

biomass accumulation. This is reflected by the cumulative Normalised Difference Vegetation Index (NDVI) 

anomaly map (Figure 4), where this biomass proxy shows negative anomalies in various provinces. In 

contrast, crop conditions appear generally better in the northeast. As a result of the persistent dry conditions 

that hampered crop growth in central and western provinces, there is a prospect of below-average national 

yield and production of winter cereals and low vegetation and water availability in pastoral areas.  

According to the JRC MARS bulletin of April, yield for wheat and barley at the national level is forecasted 

20% and 15%, respectively, below the 5-year average. The MARS bulletin for May with updated national 

yield forecasts will be released on 25 May, and most likely will be corrected downwards based on the latest 

information on rainfall and vegetation conditions.   

 

Figure 1. Difference of cumulative mean air temperature with historical average for March (left) and April 

(right) in oC. 

INFO BOX 1 - WATER SATISFACTION INDEX 

The Water Satisfaction Index (WSI) is an indicator of crop (or rangeland) performances. It expresses 

the percentage at which the crop water requirements have been met and thus indicates possible 

water stress.  It is based on a water balance scheme comparing the crop (or rangeland) water 

demand to the actual water availability.   

See more in ASAP WSI documentation.   

 

https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-mars-bulletin-vol29-no4.pdf
https://mars.jrc.ec.europa.eu/asap/files/asap_wsi_technical_report_v_2_0.pdf
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Figure 2. Cumulative rainfall anomaly for February/March/April in %, showing significant seasonal rainfall 

deficits for the affecting the northern part of Algeria. 

 

Figure 3. Spatial distribution of anomalies in the Water Satisfaction Index for crops from the start of the 

growing season until the end of April 2021. 
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Figure 4. Standardized anomalies in cumulative NDVI from the start of the growing season until the end of 

April 2021. 

INFO BOX 2 - NORMALISED DIFFERENCE VEGETATION INDEX (NDVI) 

The NDVI (Normalised Difference Vegetation Index) is used as an indicator of vegetation health. It is a 

combination of the red and near-infrared bands registered by satellites.  

 

In order to obtain quantitative yield forecasts for the main Algerian cereals (durum and soft wheat, and 

barley) and the most important provinces, we deployed a new machine learning workflow proposed by 

Meroni et al. (2021), which was shown to predict historical national yields with an accuracy of 0.16-0.2 t/ha 

(13-14 % of mean yield) within the season. This robust and automated workflow processes automatically 

different combinations of yield proxies such as ASAP NDVI, temperature, precipitation, and incident radiation 

data with machine-learning algorithms. The resulting yield forecasts computed at the end of April are shown 

per province and crop in Figures 5, 7, and 9. In Figures 6, 8, and 10, it is also mapped per province and per 

crop the percent difference of forecasted yield with the average.  

 



JRC125282         (c) European Union, 2021 

 
Figure 5. Durum wheat 2020-21 yield forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to the 90% of the national 
mean crop production, thus excluding marginal 
production provinces. 

 

 
Figure 6. Durum wheat 2020-21 yield forecast difference 
(in %) with 2002-2018 average yield at the provincial 
level. 
 

 

 

Figure 7. Soft wheat 2020-21 yield forecast at the 
provincial level. Forecasts cover the major producing 
provinces that contribute to the 90% of the national 
mean crop production, thus excluding marginal 
production provinces. 
 

Figure 8. Soft wheat 2020-21 yield forecast difference (in 
%) with 2002-2018 average yield at the provincial level. 

 
Figure 9. Barley 2020-21 yield forecast at the provincial 
level. Forecasts cover the major producing provinces that 
contribute to the 90% of the national mean crop 
production, thus excluding marginal production 
provinces. 

Figure 10. Barley 2020-21 yield forecast difference (in %) 
with 2002-2018 average yield at the provincial level. 

 

INFO BOX 3 – IN SEASON YIELD FORECASTS WITH SATELLITE DATA  

Operational yield forecasting approaches are often based on empirical regression models linking 

historical yields and administrative units-averages of seasonal satellite and climate data for cultivated 
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areas (Schauberger et al., 2020). In operations, the model is then fed with data observed for the current 

growing season to forecast the final yield. Satellite instruments providing frequent, coarse resolution 

satellite image time series, such as AVHRR (Advanced Very High Resolution Radiometer), SPOT-VGT 

(SPOT-VEGETATION), or MODIS (Moderate Resolution Imaging Spectroradiometer), have been 

extensively used for yield estimation at regional scales (Atzberger et al., 2016; Rembold et al., 2013). 

Typically, yields are estimated by regressing either vegetation indices or crop biophysical variables at 

specific dates, which are proxies for green biomass, or features characterizing the dynamics of a 

vegetation index over time such as the senescence or the green-up rate (Waldner et al., 2019). Popular 

linear regression approaches use the Normalised Difference Vegetation Index (NDVI; Rouse et al., 1974) 

either at its peak (e.g., Becker-Reshef et al., 2010; Franch et al., 2015) or its cumulative value over the 

growing season (e.g., López-lozano et al., 2015; Meroni et al., 2013). 

Whereas linear regressions may fail to capture the complex interactions between environmental 

conditions and yield, machine learning (ML) models have demonstrated powerful performance in 

various data-driven applications, including yield estimation (Cai et al., 2019; Johnson et al., 2016; Kamir 

et al., 2020; Mateo-Sanchis et al., 2019; Wolanin et al., 2020; Zhang et al., 2020). 

In this report we use the approach of Meroni et al. (2021), a generic and robust machine learning 

workflow to forecast crop yields with small, public, and easily accessible climate and satellite time 

series.  

 

Forecasts of national production are reported in Table 1. It is evident that the worst yield prospect is for 

barely and soft wheat (ca. 40% and 30% below-average, respectively), while the most important one, for 

durum wheat, is less impacted.  

 

Table 1. National production forecasts. Average crop area is used to estimate production from forecasted 

yield. The percentile places the current forecast in the historical distribution of production, i.e., it refers to the 

fraction of observed production in 2002-2018 that is lower than the current one. 

Crop 
Forecasted 
Yield (t/ha) 

Yield difference with 
average (%) 

Forecasted 
production 

(tons) 
Percentile 

Barley 0.59 -41.76 597993 0.14 

Durum wheat 1.09 -14.91 1386255 0.18 

Soft wheat 0.77 -32.64 452464 0.14 

 

If the final actual yield will reflect our negative forecasts, not all the sown area might be actually harvested. 

In this case, it is expected that harvesting would not take place in the most affected areas (i.e. the areas with 

the poorest yields), resulting in final yield statistical figures larger than the forecasted ones. 
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